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A spatially discrete model for phase separation with conserved order parameter 
is proposed. This one-dimensional model is obtained as the deterministic limit 
of an anisotropic lattice gas. A particular choice is made for the jump rates 
(which still fulfill detailed balance conditions) so that the resulting model is 
mathematically tractable. It exhibits a phase transition of first-order type whose 
nonlinear dynamics is investigated using both analytical and numerical methods. 
All the stationary solutions with zero current are found and parametrized 
in terms of Jacobian elliptic functions, showing a striking similarity with the 
nonlinear (continuous) Cahn-Hilliard equation. In the limit of infinite wave- 
length, particular solutions are found which descrive isolated domains of 
arbitrary size embedded in an homogeneous infinite medium of the opposite 
phase. New results are also presented on the structure of the set of solutions. 
Time-dependent profiles are studied in the spinodal regime and the stability of 
bounded stationary solutions is also investigated in this context. A description 
of time-dependent profiles is proposed which considers only interactions 
between neighboring domains and makes use of isolated domain solutions. This 
approach results in an analytic expression for the exponents characteristic of the 
instability of stationary solutions and is validated by comparison to numerical 
values. Qualitative results are also discussed and the relation to the Cahn- 
Hilliard equation is emphasized. 

KEY WORDS:  Phase separation dynamics; stationary solutions; discrete 
equations. 
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important features: initial pattern selection in the spinodal regime, (1-3) 
growth law of the mean domain size, (4'5) scaling properties of the structure 
function, (6) etc. However, the theoretical models (7) which are used in this 
field have been developed in a context of equilibrium statistical mechanics 
and are far from lying on a firm basis when dealing with macroscopically 
inhomogeneous nonequilibrium systems. The theoretical difficulties which 
arise in the use of such methods have not yet been overcome and it would 
be of interest to have a better understanding of their physical meaning. 

In this task, new insights could be found by using simple models on 
which different approaches could overlap. In this paper, a spatially discrete 
model is proposed which we hope fulfils this requirement. It can be derived 
at least heuristically from an anisotropic lattice gas and in principle its 
dynamics could be compared to that of the initial stochastic model. (8) The 
jump rates of the initial lattice gas have been chosen so that the stationary 
solutions of the resulting lattice model can be found analytically. This 
property is at the origin of the particular interest in the present model, 
which, besides this, is presumably equivalent to other models derived 
within a similar scheme of approximations. (9'1~ It exhibits a phase trans- 
ition of first-order type whose nonlinear dynamics is investigated using 
both analytical and numerical methods. The present model was also found 
to be strongly related to the well-known Cahn-Hilliard (CH) equation. (1'2~ 
Although no rigorous proof of a mathematical equivalence can be given, 
both statics and dynamics are found to be similar and this will be 
emphasized throughout this paper. The deeper point of divergence concerns 
the absence of a free energy functional in the present case and this seems 
to be essentially a consequence of discretization. 

In Section 2, the model and its evolution equation are obtained from 
an anisotropic lattice gas model described by a master equation. General 
properties are discussed in Section 3. The phase diagram of the transition 
is given and preliminary comments on the relation to the CH equation are 
also presented. Section 4 is devoted to the analytic derivation of the 
stationary (zero current) solutions. This requires the resolution of an 
infinite set of coupled nonlinear discrete equations and is achieved through 
a parametrization in terms of Jacobian elliptic functions. Surprisingly, the 
structure of the solution is found to be the same as for the CH equation. 
In addition, a clear picture of the structure of the set of solutions is given 
whose general features are valid for both cases. Two disjoint sets of 
bounded solutions are found, corresponding respectively to bounded solu- 
tions inside and outside the interval [0, l l .  Only the first one is relevant to 
phase separation dynamics and exists only below the critical temperature. 
A duality relation is found which connects low- and high-density solutions, 
in analogy with the usual symmetry of the CH equation. In the limit of 
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infinite wavelength, two dual one-parameter families of solutions are found 
which describe the profile of single isolated domains of arbitrary size 
embedded in an infinite homogeneous medium of the other phase. When 
the domain size becomes infinite, both converge to the same limit in which 
two semi-infinite phases with asymptotic equilibrium densities are 
separated by a stable interface. In Section 5, numerical and analytical 
results on the late stages of spinodal separation are presented. Based on 
qualitative results of a preliminary numerical study, a description of 
time-dependent profiles is proposed which considers only the interaction 
between neighboring domains. Using the previously found isolated domain 
solutions, this approach leads to an analytic expression for the exponents 
which characterize the instability of stationary solutions, giving the 
dependence on both wavelength and mean concentration. Two different 
modes are considered, one corresponding to the fusion of high-concentra- 
tion domains, the other to the fusion of low-concentration domains, and 
their relative importance is found to depend sharply on the mean concen- 
tration. The expression is then compared to numerical values obtained on 
periodic solutions, giving quantitative support to the present description. 
As a conclusion, a short list of possible developments of this model is given. 

2. DERIVATION OF THE EVOLUTION EQUATIONS 

In this section, the model is defined and its evolution equation derived 
from a lattice gas model which provides the underlying microscopic basis. 
This derivation and the approximations which are made here are already 
known to lead to mean-field-type models. ~176 Here, the transition rates of 
the lattice gas model are chosen from an additional requirement, besides 
detailed balance conditions, so that the resulting evolution equation has 
some properties of solvability, which are the basic tool for the rest of the 
paper. 

The general scheme of derivation is as follows: one considers a highly 
anisotropic lattice gas model so that the time scale of motion on a 
privileged axis z is much slower than the time scale for the diffusion in any 
perpendicular plane. Such a situation can occur, for instance, when intersti- 
tial atoms are embedded in an anisotropic matrix. In addition, we suppose 
that the anisotropic coupling to the matrix is such that a homogeneous 
equilibrium is reached independently within each plane, while the slow time 
dynamics along the z axis can be considered to be decoupled from that 
motion and reversible with respect to a pseudo-one-dimensional Ising 
Hamiltonian. In this case, the set of relevant degrees of freedom is reduced 
to the subset of mean concentrations in each perpendicular plane and the 
slow-scale dynamics is described by a one-dimensional stochastic model. 

822/69/5-6-6 
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Then, the neglect of fluctuations, or more precisely the assumption that the 
probability distribution is a sharply peaked function in the neighborhood 
of the most probable configuration, leads to a deterministic equation for 
the evolution of the mean concentration in each plane. This approximation 
is known to lead (in the continuous case) to a generalized diffusion 
equation starting from a stochastic model. (~2~ For that reason, the resulting 
discrete model can be already expected to be comparable to the CH equa- 
tion, as will be confirmed. 

This procedure is now applied to a particular case. Consider a cubic 
lattice A whose sites are occupied by at most one particle. Any configura- 
tion of the system is fully specified by the set r /of  all occupation numbers, 
the particles being all identical: 

= {ni}  A (1)  

n~ is the occupation number on site i and takes the value 1 or 0 according 
to the presence or not of a particle on that site. The time evolution is 
specified from a stochastic point of view by a master equation which 
determines the variations of the probability P(t/, t) of finding the system in 
a configuration r /at  time t: 

& P(t/, t ) = ~  { W(r/'--*rl) P(~I', t ) -  W(q~q')P(q, t)} (2) 
r/' 

All the dynamical information is contained in the transition rates 
W(q --. q') which give the probability per unit time for the system to evolve 
from configuration t/ to configuration t/'. In order to describe the motion 
of particles by elementary jumps, those rates are all set to zero except when 
the initial and final configurations differ only by the interchange of a pair 
of occupation numbers on two neighboring sites. The transition rates are 
chosen as follows: when the attempted jump is parallel to the z axis, the 
jump rate W II is assumed to fulfil detailed balance conditions with respect 
to a pseudo-one-dimensional Ising Hamiltonian H ( q ) = - J Y ~ i n i n i + u ,  
where the sum is over all lattice sites, u is the unit vector on the z axis, and 
J is a positive coupling constant. This does not completely specify the 
parallel jump rates and we further assume the following particular form: 

Wl l (q~q ' )=Vo ~ ~ 3(qi'i+a, rl')n,(1-n,+~)exp(-~Jn~_3) (3) 
i ~ A  3 =  + u  

where ~'J is defined as the configuration deduced from q by exchanging the 
occupation numbers at sites i and j,/~ is the inverse temperature, and v 0 is 
a jump frequency. The factor n~(1 - n  i+ ~) ensures particle conservation and 
exclusion of double occupation. 
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A complete physical description of the in-plane motion cannot be 
stated within the lattice gas model, as it involves nontrivial contributions 
from the imbedding matrix. Here, it will be simply assumed that the jump 
rates W z which govern jumps in the direction perpendicular to the z axis 
are large enough and sufficiently decoupled from the Hamiltonian descrip- 
tion of the z motion to destroy all the in-plane correlations in the slow time 
scale. The simplest (and very rough) way of taking this into account would 
be to assume a large constant in-plane jump attempt frequency (together 
with exclusion of double occupation). Then in some limit of infinite separa- 
tion between the two time scales, any two configurations with the same 
number of particles in each plane will have the same probability on the 
slow time scale and the details of the configurations inside the planes will 
become irrelevant. Therefore, only the number of particles or equivalently 
the mean concentration Ok on each plane k has to be retained and one can 
define an "averaged" configuration ~ as the one-dimensional set of these 
mean concentrations, 

- ( 4 )  

Within this kind of approximation, the model reduces to a pseudo- 
one-dimensional stochastic lattice model for the continuous variables Pk. 
The time evolution of the probabilities of the averaged configurations ~ is 
described by a new master equation which reads 

Ot P(~, t) = ~  {WU(~'~)P(~',t)-WU(~')P(~,t)} (5) 
r 

where the averaged transition rates W~(~ ~ 4') connect two configurations 
differing only by the exchange of one particle between two adjacent planes, 
irrespective of its actual position within those planes. Let ~' be the con- 
figuration differing from ~ by taking out one particle in the plane k and 
putting one more in the neighboring plane k + c5. The averaged transitio.n 
rate between them, WII(~ ~ ~'), is obtained from Eq. (3) by summing over 
all the configurations which contribute (with the same weight) to this 
transition and reads 

W[I(~ --~ ~ ')  = Vo[-1 -[-pk_~(e -BJ- 1)] pk(1 --Pk+a) (6) 

Now, if the distribution P(~, t) is a sharply peaked function around a given 
averaged configuration {Pk}, the fluctuations can be neglected in first 
approximation and a deterministic equation for the time evolution of the 
Pk is obtained as the first moment of the previous master equation: 

8 
~'~ {(l+Kpk+2~)Pk+a(1--pk)--(l+Kpk_6)pk(1--pk+~)} (7) ~Pk-=6=+l 
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where K is a temperature-dependent parameter: 

K =  e ~ J -  1 (8) 

and ranges from - 1  at zero temperature to 0 at infinite temperature. The 
lattice spacing has been taken equal to 1 and the time unit has been 
rescaled so that in the infinite-temperature limit (K =0 ) ,  the diffusion 
coefficient equals one in units of (lattice spacing) 2 per unit time. 

The rest of the article is devoted to the study of the above deter- 
ministic equation. In particular, spinodal decomposition in the nonlinear 
regime of dynamics will be explored. For  that purpose, noise effects are 
known to be irrelevant (~3) and the present restriction to the deterministic 
part is then well founded. Nevertheless, a comparison with the lattice gas 
dynamics might well be of great interest, in particular in the study of 
metastability. The present model (and the analytical results to be obtained 
on it) could also be used backward to determine precisely the effects of the 
approximations made in its derivation. 

3. G E N E R A L  P R O P E R T I E S  

The present section will be mostly devoted to the definition of spinodal 
line and coexistence curve, as well as the basic mathematical properties of 
Eq. (7), which will be the starting point of next section. First, one can 
remark that Eq. (7) can be cast in the form of a local conservation 
equation for the concentration on each site k: 

0 
0t Pk = --(Jk, k + 1 -- Jg -  1,k) (9) 

where the right-hand side has the form of a discrete gradient and the 
function J~,k+l is the current between sites k and k +  1: 

Jk, 'k+~=[l+Kpk_l]pk[1--Pk+l]--[l+Kpk+2]pk+~[1--pk] (10) 

From Eq. (9), it is easy to show that the total concentration of a closed 
system will be exactly conserved in time as for the CH equation. A closer 
comparison can be made by looking at the long-wavelength behavior of 
Eq. (7). In this limit, the presence of the lattice is not important and the 
concentrations p~ can be considered as depending on a continuous spatial 
coordinate z. Up to the second order in the lattice spacing, Eq. (7) can be 
then approximated by the following nonlinear diffusion equation: 

•P OID(p)~P ] 
Ot = c~z -~z ( 11 ) 
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where D(p)  is a concentration-dependent diffusion coefficient: 

D(p)  = 1 + 4Kp - 3Kp 2 (12) 

In this limit, the evolution equation exhibits further similarities with 
the CH equation. Up to this second order, both ecluations are equivalent 
and two different dynamics show up according to the sign of D(p): for 
positive values, the behavior of small enough perturbations can be shown 
to be purely diffusive and correctly described by Eq. (11); for negative 
values, Eq. (11) becomes unstable under arbitrary small perturbations of 
homogeneous profiles and corrective terms have to be added to avoid 
inconsistency. In the CH equation, a fourth-order term (a phenomenologi- 
cal surface tension) is present which stabilize the equation. Here, a further 
development to higher-order terms in lattice spacing could be a way of 
adding corrective terms in the right-hand side of Eq. (11). However, it is 
not clear whether this is sufficient to describe the discrete model and in 
particular to prove that its behavior is regular in the spinodal region. 
On that last point, one can only rely on numerical simulations. 

Separating the two regimes, a spinodal line can be defined using 
Eq. (12) as the locus of the zeros of D(p)  in the (p, K) plane (Fig. 1). This 
also defines a critical point at temperature K~ = -3 /4  and concentration 
Pc = 2/3. 

Besides these results obtained in the infinite-wavelength limit, a linear 
stability analysis can be performed around homogeneous profiles within 
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Fig. 1. Phase diagram. K is a temperature-dependent external parameter ranging from - 1 
at zero temperature to 0 at infinite temperature. The spinodal line locates the values for which 
the diffusion coefficient is zero. The coexistence curve is obtained from necessary conditions 
for the existence of a stationary solution connecting two homogeneous phases. This defines 
three regions associated to different dynamics of quasihomogeneous profiles: diffusive (above 
the coexistence curve), metastable, and unstable (inside the spinodal curve). The critical point 
is located at Pc = 2/3 and Kc = -3 /4 .  
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the discrete model itself. For that purpose, one considers a homogeneous 
infinite system at concentration p on which has been added a periodic 
perturbation 6p k ( t ): 

~p~(t )  = a(t) cos(2~vk) (13) 

where v is the wavenumber of the periodic perturbation, k the coordinate 
on the lattice, and e(t) a small time-dependent amplitude. A first-order 
development of Eq. (7) shows that the amplitude of the perturbation grows 
(or decays) exponentially with time, e(t)  oc exp(cot), and that the growth 
rate co is related to the wavenumber v through the following dispersion 
relation: 

co = -2[-1 -cos(27cv)] {(1 + 4Kp  - 3Kp  2) - 2Kp(1 - p)[1 -cos(2~v)]  } 

(14) 

In the long-wavelength limit (v-~ 0), one recovers the fact that the pertur- 
bation grows only in the region where D ( p )  is negative: 

co = - - 4 ~ 2 v 2 D ( p  ) (15)  

Both discrete and continuous equations (7) and (11) define the same 
spinodal line because the onset of instability always occurs at infinite 
wavelength. However, inside the spinodal region, the instability develops at 
finite wavelength and the values of the growth rates (Fig. 2) are different. 

The major difference between Eq. (7) and the Cahn-Hilliard equation 
seems to be of structural nature: The point is that no (local) free energy 
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P 

Fig. 2. Wavenumber v (inverse of the wavelength) associated to the most unstable mode of 
homogeneous profiles, v is represented as a function of concentration for different values of K 
and is expressed in units of inverse lattice spacing. These modes characterize the first stages 
of spinodal decomposition (see Fig. 6a). 
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functional can be constructed from which Eq. (7) could be derived. Even 
introducing a free energy functional in the infinite-wavelength limit is not 
so easy and the value of the coexistence curve which can be precisely found 
in numerical simulations could not be derived in that way. As a counter- 
part, the model exhibits a remarkable property associated to its discrete 
character, and in relation to which the particular choice of jump rates 
[Eq. (3)] was made: if one tries to write now the previously defined current 
Jk, k+t as the product of a concentration-dependent mobility Mk, k+l and 
the (discrete) gradient of a chemical potential Pk, 

Jk, k+ ~ = --Mk, k+ l(#k + 1  - -  #k) (16) 

one finds that this factorization is not only possible, but that it can be done 
in different ways. For  instance, it is easy to verify that the two choices 
(#~, M~,k+l), (#~, M~,k+l) hold, where 

#~=pk[l+K(pk I+P~+~)--KPk_~pk+~] (17a) 

M~,k+ l = 1 (17b) 

and 

pb (l+KpkPk+~)(1 +KpkPk-~) (18a) 
k - -  

1 -Pk  

M~,k (1 -- Pk+l)( l  --,Ok) (18b) 
+1= l + Kp~pk+l 

It can be also demonstrated that any algebraic function of g~ ~ and p~ solves 
Eq. (16) and that there is no other independent solution than these two. In 
the absence of any free energy functional from which a distinction could be 
made, a special choice of {#k} cannot be elicited as the true chemical 
potential and in the following all these functions will by abuse of language 
be called "chemical potentials" (between quotes) by reference to Eq. (16). 

This multiplicity of decompositions is a very specific property of 
Eq. (7) and gives the model some unique properties of solvability which 
contribute in large part to its interest. For  instance, the coexistence curve 
can be defined from the necessary condition that each "chemical potential" 
must have the same value in two homogeneous phases in equilibrium. 
Here, two independent relations can be written which relate the densities 
p+ and p of the coexisting phases: 

#~(p+ = #~(p_) (19a) 

#b(p + =#b(p_ ) (19b) 
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These two independent relations allow for the determination of p + and p 
as a function of temperature: 

- 1  
p+ = ~  [1 -t- ( - 4 K - 3 ) 1 / 2 3  (20) 

The resulting coexistence curve has been drawn, together with the spinodal 
line, on Fig. 1 and defines the same value for the critical point. The values 
of the "chemical potentials" on the coexistence curve can be also deter- 
mined: 

(K+ 1)(2K+ 1) 
A c - #~(p + ) = - K2 (21) 

1 
Bc _ #b(p _+ ) = _ K (22) 

However, it should be noted that the coexistence curve has been defined 
only through necessary conditions and that its existence remains to be 
proven. In the next section, Eqs. (17) (18) will be used to derive the full set 
of stationary solutions with zero current. In particular, a solution will be 
found which connects the two coexisting homogeneous phases by a single 
interface. In the last section, it will be shown that this is actually the only 
stable equilibrium profile in the spinodal region. 

4. S T A T I O N A R Y  S O L U T I O N S  

In this section, the time-independent solutions of Eq. (7) with zero 
current will be given explicitly and parametrized in term of Jacobian 
elliptic functions. In what follows, the discussion is undertaken in order 
to avoid a too technical presentation and requires only basic definitions 
and properties of elliptic functions which can be easily found in the 
literature (14'15) in the same standard notations. 

Starting from the requirement that the current J~.k+l is null 
everywhere along a given solution classically leads through Eq. (16) to the 
well-known fact that the chemical potential #k is constant for all the values 
of k. Due to the multiplicity in the definition of the "chemical potential" 
described in the previous section, one is led here not to one but to two sets 
of independent relations. Let A (respectively B) be the constant value taken 
by #~ (respectively ~t~) along the stationary solution. Using Eqs. (17) and 
(18), one finds that the concentrations on any triplet of successive sites 
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k - 1, k, k + 1 are related through the two following equations, valid for all 
values of k: 

p k ( l + g p k _ l + K D k + l - - K p k  1pk+l )=A (23) 

(1 + Kp~_ !pk)(1 + Kpkpk  + l) 
= B (24) 

1 --Pk 

where A and B are hence two constants (independent of k) characteristic 
of a given stationary solution. 

A first (discrete) integration of these equations is performed when one 
variable, say P~-I ,  is eliminated between Eqs. (23) and (24). This results 
into the following equation, which holds on each pair of nearest neighbor- 
ing sites k, k + 1: 

K 2  2 2 PePk + l + KPkPk + *(Pk + Pk + *) + ( B - -  KA ) pkpk + I + ( t - - B )  

x ( P k + P k + ~ ) +  ( B - - A - -  1 ) = 0  (25) 

The left-hand side of Eq. (25) has the form of a symmetrical polynomial of 
second order in both variables and a similar form would have been found 
if another choice of the variable to be eliminated was done. However, 
Eq. (25) (for all k's) is not exactly equivalent to the previous set, Eqs. (23) 
and (24), and some specifications on its valid solutions have to be added, 
which can be already stated in the following way: any solution of Eq. (25) 
(for all k's) can be constructed by iteration with increasing values of k. In 
this process, the value of Pk+l is not uniquely determined by the value of 
Pk and can be chosen at each step among two solutions. In fact, Eqs. (23) 
and (24) must be used to define the choice to be made, and this imposes 
Pk+l as the only solution of Eq. (25), for k and Pk fixed, which is distinct 
from Pk-1. This amounts only to avoiding spurious retrogression points in 
the iteration and will be taken into account in the following. 

Interest in Eq. (25) is that it can be linearized by introducing a 
parametrization in terms of Jacobian elliptic functions, and hence solved 
simultaneously for all k's. This is achieved in two steps. The first one is an 
algebraic change of parameters which permits one to reduce the multi- 
plicities in the parametrization and to introduce the elliptic parameters. 
One looks for a change of variables in the form 

Pk = ~ uk - Co (26) 
U k - -  C 1 

where the constants Co, cl, and ~ have to be chosen so that Eq.(25) 
becomes equivalent to a canonical recurrence equation of the form 

( l _ a  2) 2 2 +2abukuk+ 2 u~uk+ 1 1 - u ~ - - u Z + l  + ( 1 - b 2 ) = O  (27) 
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which form is motivated by the elliptic parametrization to be introduced 
later. The equivalence between Eq. (25) and Eq. (27) is expressed by equat- 
ing the two left-hand sides up to a nonvanishing proportionality factor. 
This gives a set of five equations from which one can extract both the 
parameters a and b and the constants Co, cl, and 4, proving ipso facto the 
existence of such a transformation, though not free of multiplicities. After 
some transformations, the constants Co, Cl, and ~ can be eliminated from 
two of the five equations and one finds that the pair of parameters (a, b) 
is any solution of the following equations: 

B 2 ( a + b )  2 
A K -  ab(a2b 2 - a 2 - b 2) 

( B  --  A K )  2 (ab + 2) 2 

4 K [ A K +  (K+  1 )(1 - B)] - (a + b) 2 - aZb 2 

(28) 

(29) 

These two equations define a correspondence between the two pairs (A, B) 
and (a, b), showing that, up to some multiplicities, a given stationary 
solution can be equivalently characterized by either of the two sets of 
parameters. As will appear clearly later, the (a, b) parametrization is more 
appropriate and is therefore used in the following. Hence, in order to start 
with a well-defined correspondence, multiplicities have to be checked in 
Eqs. (28) and (29), showing two different aspects: first, one finds that there 
are generally 12 different solutions (a, b) for a given choice of A and B 
(K fixed). Fortunately, a study of the transformations leaving invariant the 
right-hand sides of Eqs. (28) and (29) shows that these equations have one 
and only one solution (a, b) in the domain of the real plane defined by 
{b < 1, a > [b] } (Fig. 3) when A and B are real. In the following, a restric- 
tion of the values of (a, b) to that domain is assumed, which eliminates all 
the possible multiplicities in the elliptic parametrization of a same solution. 
Conversely, given the values of (a, b) and K being fixed, Eqs. (28) and (29) 
define generally two distinct values of (A, B). Here, the multiplicity makes 
sense, as distinct values of (A, B) define different solutions. It will be 
proved that this defines pairs of stationary solutions which share a number 
of properties and must be considered as dual one to another. 

The second step in the explicit derivation of a stationary solution 
consists in introducing the elliptic parametrization through Eq. (27). First, 
the parameters a and b are written as two different elliptic functions of 
same parameter m and argument ~b as 

a = dn(~b, m) (30) 

b = cn(~b, m) (31) 
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T h e r e  is s o m e  a rb i t r a r ine s s  in this choice ,  bu t  there  is no  loss of  genera l i ty ,  

p r o v i d e d  tha t  the  genera l  de f in i t ion  of  J a c o b i a n  el l ipt ic  func t ions  is con -  

s ide red  in wh ich  the  p a r a m e t e r  m can  t ake  any  real  va lue  a n d  the  a r g u m e n t  

~b any  c o m p l e x  value.  Th i s  a l lows  us to cast  the  p a r a m e t r i z a t i o n  of  s t a t ion -  

ary  so lu t i ons  in to  a s ingle  case  a n d  a v o i d  an  o t h e r w i s e  c u m b e r s o m e  (and  

n o t  s imp le r )  d i scuss ion  of  di f ferent  cases. F u r t h e r m o r e ,  the  cho ice  of  

Eqs.  (30) a n d  (31) fits in to  a m o r e  res t r ic t ive  def in i t ion  (m ~ [0, 1 ],  ~b ~ ~ )  

for  b o u n d e d  real  so lu t ions .  In  any  case, Eqs.  (30) and  ( 3 l )  can  be  inver ted :  

first, the  p a r a m e t e r  m can  be  def ined  as the  ra t io  

1 - a  2 

m = 1 - b  2 (32) 

a / t  
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Fig. 3. Domain of parametrization {a, b c9~; a > I b], b < 1 } of the set of real stationary 
solutions and its temperature-dependent partition below the critical point, for K=  -0.875. 
This domain is separated into seven regions whose boundaries correspond to particular 
(degenerate) solutions. Each point (a, b) in this domain defines at most four stationary solu- 
tions of the same wavelength. These solutions can be associated in pairs of dual solutions, 
each associated to a different value of the initial parameters (A, B). The shaded region VII 
contains no real solutions and regions III, IV, V, and VI only real unbounded solutions of 
different types. In regions I and II, each point (a, b) defines a pair of dual bounded solutions 
and a pair of dual unbounded solutions with a gap. Region II contains all bounded solutions 
evaluated outside I-0, 1 ]. Region I contains all bounded solutions in [0, I ] and vanishes at the 
critical temperature. The dashed curve locates the points on which the "chemical potential" 
A = A~.. The value of B varies continuously from - oo at (c~) to + oo at ~. Two discontinuities 
appear in/~,/?' (B=0) and 7, 7' [B = --(K+ 1)/K], related to the planar representation. Point 
e ( B = - l / K )  locates the coexistence curve and 6 [ B = - ( K + I ) ( 4 K + I ) 2 / K ]  defines a 
homogeneous solution. A third discontinuity, of physical nature, appears around point e when 
A is slightly varied. 



1008 Gobron 

Then, m being fixed, ~b can be found by inverting either Eq. (30) or 
Eq. (31). The above elliptic functions being both periodic and even, the 
value of ~b is defined only up to a sign and modulo the real and imaginary 
periods of the elliptic functions, hereafter denoted as 4 Y ( m )  and 4 i~ ' (m) .  
The choice of a particular determination of ~b, however, has no influence on 
the parametrization. 

Now, still without loss of generality, the variables uk which appear in 
Eq. (27) can be also written for each value of k as a third elliptic function 
with the same parameter m; the argument c~k is defined modulo 4~,~f(m) and 
2 iY ' (m)  from 

uk = sn(c~k, m) (33) 

Using these notations and considering Eq. (27) as a second-order polyno- 
mial equation in uk+ 1, one can remark that its normalized coefficients are 
exactly the sum and product of sn(c~k-~b) and sn(c~k+~b). This gives a 
straightforward (though not unique) way of factorizing the left-hand side of 
Eq. (27) as 

[ - 1 + m sn(~k) 2 sn(~b) 2 ] [sn(~k + 1) - sn(~k + ~b)] [sn(~k + 1) - sn(~zk - ~b)] = 0 

(34) 

where a dependence of the elliptic functions on the parameter m is implicit. 
This factorization is well defined whenever the first factor in Eq. (34) is 
nonzero and Eq. (27) can be solved directly otherwise. In all cases, the 
value of ek+ 1 can be related to that of c~k as 

~k+l =c~k+ ~ (35) 

This equality is in fact defined modulo the periods of sn(.), but Eq. (33) 
does not require much more. Now recalling that uk+2 and uk_ 1 should be 
the two.generically distinct solutions of Eq. (27) [see below, Eq. (25)], this 
imposes the choice of a constant sign of the increment in Eq. (35) for all 
k's. Therefore, a valid general solution of Eq. (27) reads 

Uk = sn(k~b + ~, m), k ~ 7/ (36) 

where 7 j is an arbitrary phase which can possibly absorb a change in the 
sign of ~b and whose value will be discussed later. 

In order to complete the derivation, the constants Co, cl, and ~ which 
define the transformation (27) have now to be given. They are solutions of 
three equations which along with Eqs. (28) and (29) define the equivalence 
between Eqs. (25) and (27). Using the same elliptic parametrization and 
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after some algebra, it can be shown that they can be all expressed with the 
help of a single new angle O ~ C as 

Co = sn(O - 3~b/2, m) (37) 

cl = sn(O - ~b/2, m) (38) 

sn(O + 3~b/2, m) - sn(O - ~b/2, m) 
= (39) 

sn(O + 3~b/2, m) - sn(O - 3~b/2, m) 

where O is a solution of the following equation: 

sn(O, m) )2=(1-b2)[(K+l)(a+b)2-a2b2] 
cn(O, m) dn(O, m) K(a + b) 2 ( a -  b) 2 

(40) 

To summarize, one can now use Eq. (27) together with Eqs. (37)-(39) and 
write the general form of a stationary solution {Pk}k~' of the evolution 
equation (7) as 

pk = 
sn(O + 3~b/2, m) - sn(O - ql/2, m) 

sn(O + 3~b/2, m) - sn(O - 3~b/2, m) 

sn(TJ + k~b, m) - sn(O - 3~b/2, m) 
• 

sn( ~ +  k~b, m) - sn(O - ~b/2, m) 
(41) 

for all k's, provided that m, ~b (or equivalently a, b), and O are related 
through the temperature-dependent equation (40). 

It is worth noting that Eq. (41) shows the same spatial dependence 
of stationary solutions as the Cahn-Hilliard equation, (16'17) although one 
deals here with discrete equations. In addition, a precise picture of the 
structure of the set of stationary solutions, valid for both cases, can be 
given and is further described below. 

First, the stationary solutions are almost all periodic and this follows 
directly from the expression given by Eq. (41) and general properties of 
elliptic functions. The only aperiodic solutions correspond to the value 
rn = +1 and can be attained continuously from periodic solutions in the 
limit of an infinite period. The presence of the lattice requires this notion 
of periodicity to be more precisely defined as either a "true periodicity" or 
a "quasiperiodicity" according to the commensurability with the lattice 
spacing. 

The general set of stationary solutions, as given by Eqs. (40) and 
(41), has now to be reduced to real-valued solutions, which are of primary 
interest. This restriction implies simply a reduction of the arbitrariness 
of g~, which until now has been unspecified. A detailed derivation will not 
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be given here, because this would involve a separate study for each non- 
equivalent domain of parametrization. However, all cases are alike and it 
can be shown that gt must be chosen so that at least one of the ratios 
(g t+  O)/r or [ ~ +  O + iY'(m)]/r is real for a suitable representation of 
the angles gt, O , and r This implies that the further allowed changes in 
the value of ~ have to be of the form gt ~ gt + c~r ~ e N, and hence induce 
only off-lattice translations in Eq. (41). This degree of freedom generates a 
continuous family of distinct solutions in cases of true periodicity, or 
amounts to an indefinite on-lattice translation when the initial solution is 
quasiperiodic. In the following, these possible transformations will not be 
explicitly taken into account and all the solutions related through such 
transformations will be considered as a single one. 

Now we can discuss the values of the parameters a and b. As can be 
checked directly from Eqs. (28) and (29), there exists a region in the (a, b) 
domain which corresponds to imaginary values of A and B and hence 
contains no real solutions. This leads to a temperature-dependent partition 
which is conveniently augmented to a set of seven distinct regions as 
depicted in Fig. 3 for a value of K below the critical temperature. In this 
representation, any real stationary solutions can be constructed first by 
choosing a point in the (a, b) domain outside region VII, and then one 
solution O of Eq. (40), which defines all the parameters of Eq. (41) up to 
an off-lattice translation. 

Equation (40) admits four different solutions O which can be deduced 
one from another through two involutions. The first one, O ~ O + i..,~'(m), 
where i~'(m) is the imaginary quarterperiod, preserves the value of 
the initial parameters A and B. The second one, O--, - O  (with a fixed 
determination of the sign of r corresponds to a change in the values of 
A and B and is the duality relation previously introduced. 

Two cases must be distinguished, depending on whether the trans- 
formation O ~ O + i X ' ( m )  is equivalent in Eq.(41) to a translation 
7 ~  7t+ c~r e e R. When the above equivalence is true, the number of 
distinct solutions due to the multiplicity in the choice of O is reduced by 
a factor two and each point (a, b) defines a single pair of dual solutions. 
In such cases, the right-hand side of Eq. (41) has always a pole (possibly 
off-lattice) when k is varied over 7/. Then, all the corresponding (quasi- 
periodic) solutions are unbounded and it can be shown that they attain all 
real values. This applies to regions III, IV, V, and VI, which have still to 
be distinguished because each corresponds to a different type of parameter- 
ization and defines different structures of solutions. 

In the other case (regions I and II), the four distinct values of O 
generate two pairs of dual solutions. In the first pair (the suitable represen- 
tations of) the ratios [ ~ +  O + i~'(m)]/r are real and the right-hand side 
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of Eq. (41) has nei ther  zeros nor  poles, even off-lattice. The  co r re spond ing  

s t a t iona ry  solut ions  are then b o u n d e d  on an interval .  The second pa i r  
co r re sponds  to real  values of  the ra t ios  (T_+ O) / r  and  defines u n b o u n d e d  
solut ions  charac te r ized  by a gap in the values they can at tain.  I t  can be 
further  p roved  that  reg ion  I, which exists only be low the crit ical tem- 
pera ture ,  conta ins  all b o u n d e d  solut ions  evalua ted  inside the in terval  
[0, 1] and  re levant  to the p rob l em of phase  separa t ion .  All o ther  b o u n d e d  
solut ions  are eva lua ted  outs ide  the in terval  [0, 1 ] and  be long to region II. 

In o rder  to give a clear pic ture  of the solut ions,  two kinds of represen- 
ta t ion  are given, In  Figs.  4 and 5, phase  por t ra i t s  of s t a t ionary  solut ions  (18/ 
are presented  which show the typical  t opo logy  a r o u n d  region I (one elliptic 
and  two hyperbo l i c  points) .  The cor respondence  between b o u n d e d  and  
u n b o u n d e d  solut ions  of region I and  between dual  so lu t ions  is also shown. 
These  phase  por t ra i t s  have  been d rawn by p lo t t ing  in the same p lane  a 
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Fig. 4. Phase portrait of stationary solutions [iterates of Eq. (23) in the plane Pk, Ok § for 
the critical value of the "chemical potential" A = A c and different initial points (K= -0.875). 
Each orbit is associated to a particular point on the dashed curve of Fig. 3. The elliptic point 
is associated to point ~ on the upper edge of region I. The two hyperbolic points give the con- 
centration on the coexistence curve. The bounded and unbounded solutions associated to 
point e are, respectively, the finite and infinite branches of the orbits connecting the two 
hyperbolic points. The finite branches are the one-kink equilibrium solution of the model 
(with two orientations) and the hyperbolic points define the coexistence values. Closed orbits 
are quasiperiodic bounded solutions and correspond to inner points of region I. Inset: the 
vicinity of the upper hyperbolic point has been magnified. The critical orbit separates bounded 
solutions (Ib) from unbounded solutions (Iu) with the same parameters [same values of A and 
B and same point in region I, corresponding to the transformation O ~  O + i~ ' (m)]  and 
from unbounded solutions of region III. 
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large number  of successive values of (Pk, Pk + 1 ), which have been obtained 
numerically by iterating Eq. (23) for a given value of A and different initial 
points. The correspondence with the representat ion in the (a, b) domain  is 
shown in the case A = A c ,  which is depicted both  as a phase portrai t  in 
Fig. 4 and as a single curve in Fig. 3, proving that  the particular points of 
the latter are the particular orbits of the former. Figure 5 corresponds to a 
slightly different value of A. 

The set of  bounded  solutions of region I is of particular importance 
and must  be described in more  detail. These solutions can be alternatively 
defined by their wavelength 2 '  and mean  concentra t ion p as 

5 ~ 42U(m) 4F[~/2 ,  m]  (42) 
I ~ l  F[Arccos(b) ,  m]  

C 1 - -  C 2 H [ 1 / c ~ ,  m] 7 
p = ~ 1 + - - c 2  F [~ -~ - ,  m---] J (43) 

where F [ . ,  m]  and HI-., rn]  are, respectively, elliptic integrals (14) of first 
and third kind. In order  to render more  explicit the dependence on the 
parameters  a and b, the par t icu lar  solutions defined on the boundaries  of 
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Fig. 5. Phase portrait of stationary solutions for a slightly higher value of the "chemical 
potential" A = A c + 0.03 and the same value of temperature K= --0.875. The two hyperbolic 
points are no longer connected (which corresponds to a discontinuity around point ~) and the 
bounded critical orbit describes a single high-concentration domain in a homogeneous 
low-concentration phase. Inset: the dual orbits obtained by the transformation O ~--6) 
(corresponding to a change in the values of A and B). Solutions are left almost unchanged 
except for the exchange between high and low concentrations. 
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region I have been more  studied. In addition, the concentra t ion range of 
s tat ionary solutions has been plotted in Fig. 6a as a function of a and b, 
showing the general behavior. 

The uppermost  edge of region I is a segment of the line a - -  1, so that  
the parameter  m equals 0 and elliptic functions reduce to circular ones. On  
this segment, all bounded  solutions are constant  and such a vanishing in 
their ampli tude can be explained by the discontinuity in the order of multi- 
plicity of Eq. (40) between region I and region IV. These constant  solutions 
are the elliptic points in phase portrai ts  and the zero-frequency modes of 
the linear stability analysis [Eq. (14)]  for the associated wavenumber  
v= 1/5~=Arccos(b)/2m All the concentra t ion range inside the spinodal 
domain  is covered and the two values of  the spinodal line are simul- 
taneously attained by the dual solutions defined for a = b = 1 (v = 0). 

The leftmost lower edge is the border  with region VII  and defines self- 
dual s tat ionary solutions. Accordingly, there is only one bounded  solution 
[O=iJ l ' (m)]  defined on each point, starting from a constant  solution 
and the smallest-wavelength limit at a = 1 and ending on the line a = b with 
the infinite-wavelength solution which defines the coexistence curve. The 
concentra t ion profiles of some solutions are drawn in Fig. 6b, showing the 
variations of both  concentra t ion range and wavelength. 

b) B) c) 
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Fig. 6. Bounded stationary solutions of region I ( K =  -0.875).  (a) The concentration range 
of the bounded solutions has  been plotted on a vertical axis as a function of a and b. Due  to 
the presence of two dual solutions on each point, this defines two intervals above each 
point (a, b), progressively merging into one another  when the self-dual line is approached. 
(b, c) Concentration profiles of particular solutions defined on the boundaries of region I. The 
concentration scale has been reduced by a factor 1/2 from the scale of (a) and all drawings 
have a width of 50 sites. (b) Self-dual solutions [left boundary of (a); (c) infinite-wavelength 
solutions [right boundary of (a)]. Both sequences start from homogeneous solutions 
[smallest-wavelength limit in (b) and values at the spinodal in (c)] and end on the same 
equilibrium profile (d), which connects the two phases defined by the coexistence curve. 

822/69/5-6-7 



1 01 4 Gobron 

The third edge is the segment of the line a = b corresponding to values 
between a = 2 ( K +  1) 1/2 and a - -1 .  There the stationary solutions can be 
parametrized in terms of hyperbolic functions (m -~ 1) and have an infinite 
period. In phase portraits, they correspond to the limiting bounded orbits 
attached to a hyperbolic point. Each point (a, b) defines two such dual 
solutions which describe a single stationary domain of high or low concen- 
tration embedded in a homogeneous infinite medium of the opposite phase. 
The concentration range varies across the metastability region from the 
values on the spinodal at a = b = 1 to the values on the coexistence curve 
for a=b=2(K+ 1) 1/2. Some concentration profiles are drawn in Fig. 6c, 
showing the variation in width and amplitude of domains from spinodal 
line to coexistence curve. 

Due to their interest and by anticipation of their use in the next sec- 
tion, the explicit form of these infinite-wavelength solutions will be given. 
It can be obtained from Eqs. (40) and (41) in the limit m ~ 1, but a change 
of parameters O' = O -  iS ' (m)-  ~(m) and ~ '  = ~ -  Sf(m) has to be 
introduced before taking that limit in order to avoid indeterminacy. J t ( rn)  
is the real quarterperiod of elliptic functions and goes to infinity when m 
tends to 1. Then the solutions for m = 1 are found in a form similar to 
Eq. (41) as 

cosh(20'  + 3~b)- c o s h ( 2 0 ' -  ~b) 

Pk = cosh(20'  + 3~b) - cosh(20'  - 3~b) 

cosh(2k~b + 27 t') + cosh(20'  - 3~b) 
x (44) 

cosh(2k~b + 27 t') + cosh(20'  - ~b) 

where ~b is related to a (or equivalently to b) through the relation 

~b = Arccosh(1/a) (45) 

and taken as positive in the following. O' can take two values differing by 
a sign: 

1 ~(  K(cosh2(2~b) ~ 1 _ ) ) 1 / 2 1  
O' = _+ ~ Arcsinh (46) 

L \ 2 ( K +  1)cosh(2O)+ 2 K +  1 

The negative (respectively positive) value of O' is associated to a high 
(respectively low) concentration domain and the corresponding "chemical 
potential" A is given as 

2 cosh(2~b) cosh(40'  - ~b) - cosh(3~b) 
A = I-2 cosh(2~b) + 1] 2 c o s h ( 4 0 ' -  ~b) - cosh((b) (47) 
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A simple physical meaning can be also given to the angle 0,. One can 
define the value of the half-width L of the domain as the distance from the 
center of the domain at which the concentration equals the half sum of the 
two extreme values (in the center of the domain and at infinity). A simple 
calculation yields the value of L as 

L = 2~ Arccos[cosh(20' - ~b) + 2] (48) 

For large domain sizes (O'--+ +co), the above equation can be 
approximated and the half-width L is simply given as the ratio of the two 
angles: 

IO'1 
L ~ (49) 

In the limit of infinite domain size, a single kink solution (with two 
possible orientations) is obtained which connects the two previously found 
coexistence phases [Eq. (20)]. As in the case of the CH equation, it can be 
parametrized using a hyperbolic tangent as 

- 1  
p~ = ~-~ [1 + tanh(~b) tanh(k~b + ~ ) l  (50) 

where t a n h ( ~ b ) = ( - 4 K - 3 )  */z and the symbol " + "  refers to the two 
orientations. In this case, A takes the previously found critical value A~. 
for which the two hyperbolic points of the phase portrait (Fig. 4) are 
exceptionally connected by the above solution. 

5. D Y N A M I C S  

In this section, some results are described concerning the dynamics 
of this model and which are intended to be an illustrative example of its 
interest. This is, however, far from being an exhaustive review of what 
can be made and some interesting points have still to be worked out. The 
present study concerns the spinodal region and shows some new results 
about the nonlinear regime. 

They are based partly on numerical simulations and for that purpose 
the evolution equation (7) has been replaced by a numerical scheme in 
which the time variable is discretized. The time step z is chosen constant 
and of a sufficiently small value that no strong departure from the original 
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Eq. (7) could appear during the time of simulation. Time evolution was 
then computed using the following algorithm: 

pk( t + ~) = pk(t) + r[Ak + 1(0 + A t -  1(0 -- 2Ak(t)] (51) 

where Ak(t) is the "chemical potential" at site k and time t: 

A k ( t ) = p k ( t ) [ l + K p k + ~ ( t ) + K p k  l ( t ) - -Kpk+l ( t )pk  a(t)] (52) 

The right-hand side of Eq. (51) has the form of a discrete Laplacian. This, 
together with the fact that the time step ~ can be given rather large values, 
contributes to make Eq. (51) a fast algorithm for the simulation of phase 
separation dynamics. 

In the spinodal regime, numerical simulations have been performed for 
different values of mean concentration and temperature, all showing that 
also the dynamics is very close to a Cahn Hilliard-type behavior. Although 
no mathematical proof of the equivalence between both dynamics can be 
given, this seems to be a reasonable hypothesis. For that reason, the pre- 
sent model could be considered as a discrete version of the CH equation 
on which both precise numerical and analytical results are available. A 
typical evolution of the model in the spinodal regime as computed from 
Eq. (51) is shown in Fig. 7. Starting from an unstable homogeneous profile, 
a perturbation grows out of an initially small random noise (Fig. 7a) and 
imposes a well-defined wavelength throughout the system compatible with 
the linear stability analysis, as can be checked in Fig. 2. At a later time 
(Fig. 7b), the perturbation saturates within the equilibrium values of the 
concentration and a further evolution of the profile occurs only through 
coalescence of neighboring domains (Fig. 7c). In this late stage, the typical 
growth law of the domain size was found to be compatible with a 
logarithmic time dependence, reflecting the one-dimensional character of 
the model. 

Beside these standard results, some other information can be gained 
due to the numerical precision of these simulations: the spatial variations 
of the "chemical potential" Ak(t) can be studied and in the late stages show 
the same kind of behavior as in Fig. 8 over orders of magnitude. From 
this observation, which was verified in all the simulations, qualitative 
statements can be made about the behavior of time-dependent profiles in 
this regime: (a) for such values of mean concentration and a sufficient 
coarsening, the high-concentration domains can be given independently a 
well-defined value of the "chemical potential" which depends only on their 
size. This is valid at any time except perhaps when the domain is about to 
disappear. A similar statement can be made at high concentrations by 
exchanging the roles of the two phases. (b) The current between neigh- 
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boring domains can be considered as constant across the dominant low- 
concentration phase; it depends on the difference between the "chemical 
potentials" and on the distance between domains. (c) In spite of the 
relative stability of the profile and the small dispersion in the distribution 
of domain sizes, the system cannot be generally considered as globally near 
a single periodic stationary solution, as the correlation length of the 
"chemical potential" is hardly larger than the mean domain size. 

In view of these observations, it seems more appropriate to describe 
such a system as a collection of domains of high concentration with an 
exchange of matter between nearest neighbors depending on a size-depend- 
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Fig. 7. Snapshots of a typical time evolution of the model in the spinodal region obtained 
by numerical simulations ( K =  -0.875).  The initial configuration consists of homogeneous  
profile at concentration p = 0.5714 plus a random noise of small amplitude (10 4). The com- 
putat ion was performed on a box with 252 sites and periodic boundary conditions. The three 
pictures correspond to the same window of 120 sites for three different times: (a) t = 125; the 
system is still in the initial linear regime, but  the most  unstable mode is already dominant  (see 
Fig. 2). (b) t = t250; most  of the initial domains  still survive and saturate around the equi- 
librium values of the density. (c) t = 1.25 • 106; the system now evolves by coalescence of 
neighboring domains. The mean size of domains  follows a logarithmic growth law. 
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ent "chemical potential." In this interpretation, the approximate periodicity 
of the profile is explained by the homogeneity of the initial profile and the 
periodicity of the dominant fluctuation which is established in the linear 
stage. The small observed dispersion in the distribution of domain sizes 
then should be a consequence of the strong size dependence of the lifetime 
and of a finite time of computation. Finally, this is also consistent with the 
absence of diffusion in the system, which should prevent a new long- 
distance ordering in the late stages. 

This interpretation is used in the following as a working approxima- 
tion scheme and leads to an expression for the exponents characterizing the 
instability of stationary solutions. Quantitative support then will be given 
to this interpretation by a direct comparison to numerical values which 
can be precisely computed for periodic solutions. For this reason, only 
the simplest unstable modes will be considered, which correspond to a 
doubling of the spatial wavelength of the stationary profile under con- 
sideration. The method could nevertheless apply to other unstable modes, 
giving exponents of the same order. 

One considers a periodic or quasiperiodic bounded stationary solution 
as the initial profile of an infinite system. In order to keep with the simplest 
approximation, the interface thickness will be neglected and the concentra- 
tions in both phases taken as the coexistence values [Eq. (20)]. In this 
approximation, a profile will be described as a succession of domains of 
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Fig. 8. Spatial variation of the "chemical potential" A in the late stage of spinodal decom- 
position. The value of A -  A,. (A c is the equilibrium value) has been superimposed on the con- 
centration profile of Fig. 6c. For these values of concentration and coarsening, the system is 
well approximated by considering it as a collection of high-concentration domains in a low- 
concentration phase. Each domain can be given a well-defined value of "chemical potential" 
which depends only on its size. The exchange of matter between neighboring domains is due 
to a constant current in the low-concentration phase proportional to the difference between 
"chemical potentials." 
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high concentration p + and half-width L+ alternating with domains of low 
concentration p_ and half-width L_.  The wavelength ~ and mean 
concentration p of the stationary solution will be here approximated as 

& a = 2 ( L + + L  ) (53) 

p+L+ + p _ L _  
p = (54) 

L + + L _  

At time t = 0, a small perturbation is added with zero concentration 
and a wavelength exactly twice that of the initial stationary solution. Then 
the system starts to evolve, keeping this new wavelength at all times. Now, 
if the above considerations are correct, the only noticeable effect of the per- 
turbation in the linear regime is to modify the sizes of high-concentration 
domains. When applied to the case of a doubling of the wavelength, this 
fully specifies the nature of the perturbation; mean concentration and 
wavelength being fixed, growing domains of high concentration must alter- 
nate with shrinking ones, and their half-widths evolve in time according to, 
respectively, 

L(~+~(t) = L+ + c~L+(t) (55a) 

L(e+)(t) = L+ - 3L+ (t) (55b) 

where 6L+(t)  is a small time-dependent variation whose initial value 
depends on the amplitude of the perturbation. Within the present 
approximations, a well-defined value of "chemical potential" A can be 
given to each domain using the expression for isolated domain solutions 
[Eq. (47)]. In the linear regime when the size variations remain small, its 
time evolution is related to that of the half-widths as 

6A+( t )=  6L+(t)  (56) 
L+ 

where the derivative has to be calculated from Eq. (47) and evaluated at 
L = L+. The difference in the chemical potentials of neighboring domains 
induces a flow of matter between them, and the current, considered as 
constant throughout the low-concentration phase, then reads 

1 
J(1 ~ 2)( t )  = L ~A+(I) ( 5 7 )  

Now integrating the evolution equation (7) over one interface leads to the 
equation for the time evolution for the half-widths as 

3 1 3~Lt+ (P+ - P  ) 5  I-6L+(t)] = L-_ 6L+(t) (58) 
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This equation can be readily solved, showing that the perturbation grows 
exponentially in the linear regime with a characteristic exponent 2+ which 
reads 

1 Cg~L r+ (59) 2 + = - ( p + _ p _ ) L _  

A similar analysis can be made by exchanging the role of high- and 
low-concentration phases so that finally two different unstable modes are 
found for each stationary solution, associated to a doubling of the 
wavelength. In the limit of large domain size, Eq. (47) can be approximated 
and the two exponents expressed as 

2+=32~b th(~)2 exp{-2~b(L+-2)} (60) 
3 - th(~b) 2 L_ 

2 =32~b th(~b)2 exp{-2~b(L_+2)} (61) 
3 -- th(~b )2 L + 

where ~b = A r c t a n h [ ( - 4 K - 3 )  1/2] is the value obtained in the limit of 
infinite domain sizes. Now using Eqs. (60) and (61) together with Eqs. (53) 
and (54) gives the dependence of the relative stability of stationary solu- 
tions on their wavelength and mean concentration. In particular, it must be 
noted that the exponents have a wavelength dependence in e-~Se/Y, ~ > 0, 
hence the same as what was already estimated for a symmetric solution of 
the CH equation, using a tight-binding method/12~ This is perhaps an 
indication that both models are equivalent also from a dynamical point of 
view. It also proves that stable stationary solutions must have an infinite 
wavelength, thus eliciting the hyperbolic tangent profile [Eq. (50)] as the 
unique stable equilibrium solution in the spinodal domain. 

The explicit dependence on the concentration is also found, and can be 
considered as exponential over a wide range of values. It has been plotted 
in Fig. 9 for two different wavelengths and the same value of temperature. 
This indicates that the two different modes are alternatively dominant as 
the concentration is varied, the description in terms of interacting domains 
of the minority phase appearing to be always the most appropriate. The 
exponents for the same periodic solutions have also been obtained numeri- 
cally, by computing directly the eigenvalues of the linearized evolution 
operator of Eq. (7). In the case of periodic stationary solutions and 
wavelength-doubling modes, the problem reduces to the finding of the 
positive eigenvalues of a finite matrix which has been diagonalized numeri- 
cally. The phase 7 ~ with the lattice was tested on a smaller system to be of 
very weak influence and the eigenvalues were computed only for particular 
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values when the two modes can be separated by an additional requirement 
of symmetry in the perturbation. Results are plotted in Fig. 9 and show an 
almost perfect agreement with the values obtained from Eqs. (60) and 
(61) in a large range of concentration. The computed exponents are also 
found to be drastically enhanced for the largest and smallest values of con- 
centration. These values correspond to the limit of existence of stationary 
solutions for a fixed wavelength and the enhancement is due to the dis- 
appearance of domains in the minority phase. Such an effect was discarded 
in the derivation of Eqs. (60), (61) and a more careful calculation should 
be made along the same lines which takes into account both the finite 
width of the interface and the size dependence of concentration inside 
domains. 

However, the very good accuracy of Eqs. (60), (61) in their domain of 
validity, even for rather small values of wavelength and within drastic 
approximations, gives strong support to the idea that the description in 
terms of interacting domains is the correct one already for stationary solu- 
tions and afortiori for time-dependent profiles in the late stages of spinodal 
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Fig. 9. Exponent  2 of the unstable modes around stationary solutions, represented as a func- 
tion of concentration, for two values of the wavelength ~ :  upper curves and square points: 

= 30; lower curves and circles: ~ = 4 2 .  Here K = - 0 . 7 8 5 .  Two modes are considered, 
associated to a doubling of the wavelength; white dots and associated curves: the system is 
considered as interacting high-concentration domains;  black dots and associated curves: the 
same system is considered as interacting low-concentration domains. The dots show the 
numerical values obtained by linearization of the evolution operator around a given station- 
ary solution. Solid lines are the analytical results from Eqs. (60) and (61), showing a very 
good agreement in the central domain of concentration. The strong enhancement  of the 
numerical values on both sides is due to the vanishing in size and amplitude of domains  of 
the minor  phase. 
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decomposition. This was checked, for numerical reasons, only for a par- 
ticular set of perturbations and a further study of unstable modes with 
larger wavelength could be of interest. It can be also added that the above 
description also holds beyond the linear regime when the difference in size 
between domains is not small. It was also verified on a few examples that 
this gives also correct predictions for the exponents which can be defined 
on time-dependent profiles such as in Fig. 8. 

6. C O N C L U S I O N  

A one-dimensional spatially discrete model has been proposed which 
describes a dynamical process of phase separation with conserved order 
parameter. Although related from the beginning to an anisotropic lattice 
gas and in spite of the absence of a well-defined free energy functional, 
strong analogies with the Cahn-Hilliard equation have been found. In par- 
ticular, both the structure of stationary solutions and their dynamic 
stability were found to be comparable, giving support to the idea that the 
present model is a correct discrete version of the Cahn-Hilliard equation. 
Furthermore, new results were presented on both static and dynamical 
aspects of phase separation, showing the large potential interest of such a 
model: First, a full parametrization in terms of elliptic variables provided 
a clear picture of the stationary solutions, showing the particular position 
of spinodal and coexistence curves among bounded solutions. Then, the 
dynamics of spinodal decomposition was investigated in the strongly non- 
linear regime; using previously found stationary solutions as an input for 
characterizing single domains, this study has shown that a system under- 
going spinodal decomposition is better described as a rescaled system of 
domains with nearest-neighbor interactions, rather than by an approximate 
periodic stationary solution. At the same time, this provided an example of 
the interest of such a model in which new results can be found using the 
interplay between accurate numerical simulations and analytical results. 

A number of further developments can be thought of, roughly 
classified along two directions: 

On a fundamental level, the relation to both the underlying lattice gas 
model and the Cahn-Hilliard equation should be investigated in more 
detail. This model could provide new insights on the nature of the 
approximations which lead to a factorization of correlation functions 
l-Eq. (5)]; the relation to continuous models could be also considered from 
a more mathematical point of view. In that way, a better understanding of 
the nature of the multiplicity of factorization of the current operator could 
be a key point. 

More physically oriented developments of the model can be also 
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p r o p o s e d  which could  make  use of  the poss ibi l i ty  of p lay ing  on bo th  
ana ly t ica l  and  numer ica l  levels to test some new ideas, as in the case of 
sp inoda l  decompos i t ion ,  bu t  for different regimes of  the dynamics  
(metas tabi l i ty ,  cri t ical  dynamics ,  etc.) or  different init ial  condi t ions  (macro-  
scopic  f luctuat ions  of concentration)/L9~ Other ,  more  finely tuned  
p h e n o m e n a  could  be also der ived from the precise knowledge  of the set of 
s t a t iona ry  solut ions:  for instance,  the j u m p  from the l inear  to the non l inea r  
regime in in ter thedia te  stages of phase  sepa ra t ion  may  be found to depend  
s t rongly  on the equi l ib r ium solut ions  which can be a p p r o a c h e d  by the 
system and  influence the s t ructure  of the residual  noise in the late stages. 

Final ly ,  extensions of  tha t  k ind  of mode l  to higher  d imens ion  also 
have to be considered.  In  view of the present  numer ica l  and  analyt ica l  state 
of  the art ,  a two- or  th ree -d imens iona l  equivalent  of tha t  mode l  cer ta inly 
would  be of  great  interest.  P re l iminary  numer ica l  results on simple 
genera l iza t ions  were a l ready  obta ined ,  but  an equivalent  of  Eqs. (17) and  
(18) has still to be found  to al low for the cons t ruc t ion  of a mode l  of phase  
sepa ra t ion  solvable  in h igher  dimensions.  
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